Indoor Human Fall Detection Algorithm Based on Wireless SensingIndoor Human Fall Detection Algorithm Based on Wireless Sensing
Chao Wang;Lin Tang;Meng Zhou;Yinfan Ding;Xueyong Zhuang;Jie Wu;
摘要(Abstract):
As the main health threat to the elderly living alone and performing indoor activities,falls have attracted great attention from institutions and society.Currently,fall detection systems are mainly based on wear sensors,environmental sensors,and computer vision,which need to be worn or require complex equipment construction.However,they have limitations and will interfere with the daily life of the elderly.On the basis of the indoor propagation theory of wireless signals,this paper proposes a conceptual verification module using Wi-Fi signals to identify human fall behavior.The module can detect falls without invading privacy and affecting human comfort and has the advantages of noninvasive,robustness,universality,and low price.The module combines digital signal processing technology and machine learning technology.This paper analyzes and processes the channel state information(CSI) data of wireless signals,and the local outlier factor algorithm is used to find the abnormal CSI sequence.The support vector machine and extreme gradient boosting algorithms are used for classification,recognition,and comparative research.Experimental results show that the average accuracy of fall detection based on wireless sensing is more than 90%.This work has important social significance in ensuring the safety of the elderly.
关键词(KeyWords):
基金项目(Foundation): supported by Special Zone Project of National Defense Innovation;; the National Natural Science Foundation of China (Nos.61572304 and 61272096);; the Key Program of the National Natural Science Foundation of China (No.61332019);; Open Research Fund of State Key Laboratory of Cryptology
作者(Authors): Chao Wang;Lin Tang;Meng Zhou;Yinfan Ding;Xueyong Zhuang;Jie Wu;
参考文献(References):
- [1]C.Wang,S.Chen,Y.Yang,F.Hu,F.Liu,and J.Wu,Literature review on wireless sensing-Wi-Fi signal-based recognition of human activities,Tsinghua Science and Technology,vol.23,no.2,pp.203-222,2018.
- [2]C.Y.Hsu,A.Ahuja,S.Yue,R.Hristov,Z.Kabelac,and D.Katabi,Zero-effort in-home sleep and insomnia monitoring using radio signals,Proc.ACM Interact.Mob.Wearable Ubiquitous Technol.,vol.1,no.3,pp.1-18,2017.
- [3]M.Zhao,T.Li,M.A.Alsheikh,Y.Tian,H.Zhao,A.Torralba,and D.Katabi,Through-wall human pose estimation using radio signals,in Proc.IEEE/CVFConference on Computer Vision and Pattern Recognition,Salt Lake City,UT,USA,2018,pp.7356-7365.
- [4]T.Li,L.Fan,M.Zhao,Y.Liu,and D.Katabi,Making the invisible visible:Action recognition through walls and occlusions,in Proc.2019 IEEE/CVF International Conference on Computer Vision,Seoul,Republic of Korea,2019,pp.872-881.
- [5]S.Yue,Y.Yang,H.Wang,H.Rahul,and D.Katabi,Body Compass:Monitoring sleep posture with wireless signals,Proc.ACM Interact.Mob.Wearable Ubiquitous Technol.,vol.4,no.2,pp.1-25,2020.
- [6]L.Fan,T.Li,R.Fang,R.Hristov,Y.Yuan,and D.Katabi,Learning longterm representations for person reidentification using radio signals,in Proc.2020 IEEE/CVFConference on Computer Vision and Pattern Recognition,Seattle,WA,USA,2020,pp.10696-10706.
- [7]J.Lv,W.Yang,and D.Man,Device-free passive identity Identification via Wi Fi signals,Sensors,vol.17,no.11,p.2520,2017.
- [8]H.Zhu,F.Xiao,L.Sun,R.Wang,and P.Yang,R-TTWD:Robust device-free through-the-wall detection of moving human with Wi Fi,IEEE J.Sel.Areas Commun.,vol.35,no.5,pp.1090-1103,2017.
- [9]T.Hang,Y.Zheng,K.Qian,C.Wu,Z.Yang,X.Zhou,Y.Liu,and G.Chen,Wi SH:Wi Fi-based real-time human detection,Tsinghua Science and Technology,vol.24,no.5,pp.615-629,2019.
- [10]B.Yu,Y.Wang,K.Niu,Y.Zeng,T.Gu,L.Wang,C.Guan,and D.Zhang,Wi Fi-sleep:Sleep stage monitoring using commodity Wi-Fi devices,IEEE Internet Things J.,vol.8,no.18,pp.13900-13913,2021.
- [11]S.Yang,Z.Yuan,and W.Li,Error data analytics on RSSrange-based localization,Big Data Mining and Analytics,vol.3,no.3,pp.155-170,2020.
- [12]Y.Zeng,P.H.Pathak,and P.Mohapatra,Wi Who:Wi Fibased person identification in smart spaces,in Proc.201615thACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN),Vienna,Austria,2016,pp.1-12.
- [13]Enhancements for higher throughput,IEEE Standard802.11n,2009.
- [14]H.Abdel-Nasser,R.Samir,I.Sabek,and M.Youssef,Mono PHY:Mono-stream-based device-free WLANlocalization via physical layer information,in Proc.2013 IEEE Wireless Communications and Networking Conference(WCNC),Shanghai,China,2013,pp.4546-4551.
- [15]H.Chen,Y.Zhang,W.Li,X.Tao,and P.Zhang,Con Fi:Convolutional neural networks based indoor Wi-Fi localization using channel state information,IEEE Access,vol.5,pp.18066-18074,2017.
- [16]J.Gu,J.Wang,L.Zhang,Z.Yu,X.Xin,and Y.Liu,Spotlight:Hot target discovery and localization with crowdsourced photos,Tsinghua Science and Technology,vol.25,no.1,pp.68-80,2019.
- [17]Z.Song,Z.Cao,Z.Li,J.Wang,and Y.Liu,Inertial motion tracking on mobile and wearable devices:Recent advancements and challenges,Tsinghua Science and Technology,vol.26,no.5,pp.692-705,2021.
- [18]Z.Zhang,X.Cong,W.Feng,H.Zhang,G.Fu,and J.Chen,WAEAS:An optimization scheme of EAS scheduler for wearable applications,Tsinghua Science and Technology,vol.26,no.1,pp.72-84,2020.
- [19]H.Zhu,F.Xiao,L.Sun,X.Xie,P.Yang,and R.Wang,Robust and passive motion detection with COTS Wi Fi devices,Tsinghua Science and Technology,vol.22,no.4,pp.345-359,2017.
- [20]M.M.Breunig,H.-P.Kirigel,R.T.Ng,and J.Sander,LOF:Identifying density-based local outliers,in Proc.2000 ACM SIGMOD International Conference on Management of Data,Dallas,Texas,USA,2000,pp.93-104.
- [21]X.Zhang,C.Xiu,Y.Wang,and D.Yang,Highprecision Wi Fi indoor localization algorithm based on CSI-XGBoost,J.Beijing Univ.Aeronaut.Astronaut.,vol.44,no.12,pp.2536-2544,2018.
- [22]C.C.Chang,LIBSVM:A library for support vector machines,ACM Trans.Intell.Syst.Technol.,vol.2,no.3,pp.1-27,2011.
- [23]T.Chen and C.Guestrin,XGBoost:A scalable tree boosting system,in Proc.22ndACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining,San Francisco,CA,USA,2016,pp.785-794.
- [24]D.Halperin,W.Hu,A.Sheth,and D.Wetherall,802.11with multiple antennas for dummies,ACM SIGCOMMComput.Commun.Rev.,vol.40,no.1,pp.19-25,2010.