DLP Learning from Uncertain DataDLP Learning from Uncertain Data
朱曼;高志强;漆桂林;季秋;
摘要(Abstract):
Description logic programs (DLP) are an expressive but tractable subset of OWL. This paper ana-lyzes the important under-researched problem of learning DLP from uncertain data. Current studies have rarely explored the plentiful uncertain data populating the semantic web. This algorithm handles uncertain data in an inductive logic programming framework by modifying the performance evaluation criteria. A pseudo-log-likelihood based measure is used to evaluate the performance of different literals under uncer-tainties. Experiments on two datasets demonstrate that the approach is able to automatically learn a rule-set from uncertain data with acceptable accuracy.
关键词(KeyWords):
基金项目(Foundation): Supported by the National Natural Science Foundation of China(Nos.60773107,60873153,and 60803061)
作者(Authors): 朱曼;高志强;漆桂林;季秋;
参考文献(References):
- [1] Bizer C, Heath T, Idehen K, et al. Linked data on the web (IDOW2008). In: Proceedings of the 17th International Con- ference on World Wide Web. Beijing, 2008: 1265-1266.
- [2] Lukasiewicz T, Straccia U. Description logic programs under probabilistic uncertainty and fuzzy vagueness. In- ternational Journal of Approximate Reasoning, 2009, 50(6): 837-853.
- [3] Straccia U. Managing uncertainty and vagueness in de- scription logics, logic programs and description logic pro- grams. In: Proceedings of Reasoning Web. 2008: 54-103.
- [4] Grosof B, Horrocks I, Volz R, et al. Description logic pro- grams: Combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web. Budapest, Hungary, 2003: 48-57.
- [5] Etzioni O, Cafarella M, Soderland S, et al. Open informa- tion extraction from the web. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India, 2007: 2670-2676.
- [6] Muggleton S. Inductive logic programming. New Genera- tion Comput., 1991, 8(4): 295-318.
- [7] Flach P A, Lachiche N. Naive bayesian classification of structured data. Machine Learning, 2004, 57(3): 233-269.
- [8] Landwehr N, Kersting K, Luc D R. nfoil: Integrating naive bayes and foil. In: Proceedings of the 20th National Con- ference on Artificial Intelligence. Pittsburgh, USA, 2005: 795-800.
- [9] Lavrac N. Inductive logic programming. In: Proceedings of the 10th Logic Programming Workshop. Zurich, Switzer- land, 1994: 146-160.
- [10] Kersting K, Luc D R. Towards combining inductive logic programming with bayesian networks. In: Proceedings of the 11th International Conference on Inductive Logic Pro- gramming. Strasbourg, France, 2001: 118-131.
- [11] Lehmann J. DL-learner: Learning concepts in description logics. Journal of Machine Learning Research JMLR, 2009, 10(Nov.): 2639-2642.
- [12] Fanizzi N, d’Amato C, Esposito F. Dl-foil concept learning in description logics. In: Proceedings of the 18th Interna- tional Conference on Inductive Logic Programming. Pra- gue, Czech Republic, 2008: 107-121.
- [13] Fanizzi N, d’Amato C, Esposito F. Learning with kernels in description logics. In: Proceedings of the 18th Interna- tional Conference on Inductive Logic Programming. Pra- gue, Czech Republic, 2008: 210-225.
- [14] Luc D R, Kersting K. Probabilistic logic learning. ACM-SIGKDD Explorations, 2003, 5(1): 31-48.
- [15] Getoor L, Friedman N, Koller D, et al. Learning probabil- istic relational models. In: Dzeroski S, Lavrac N, eds. Re- lational Data Mining. New York, USA: Springer-Verlag, 2001: 307-333.
- [16] Quinlan R. Learning logical definitions from relations. Machine Learning, 1990, 5(3): 239-266.
- [17] Barron A, Rissanen J, Yu Bin. The minimum description length principle in coding and modeling. IEEE Trans. In- formation Theory, 1998, 44(6): 2743-2760.
- [18] Domingos P, Kok S, Lowd D, et al. Markov logic. In: Pro- ceedings of the 18th International Conference on Inductive Logic Programming. Prague, Czech Republic, 2008: 92-117.
- [19] Kok S, Domingos P. Learning the structure of markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005: 441-448.
- [20] Luc D R, Kersting K. Probabilistic inductive logic pro- gramming. In: Luc De Raedt, Paolo Frasconi, Kristian Kersting, et al., eds. Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2008: 1-27.